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Preface

The subject of regression, or of the linear model, is central to the subject of
statistics. It concerns what can be said about some quantity of interest, which
we may not be able to measure, starting from information about one or more
other quantities, in which we may not be interested but which we can measure.
We model our variable of interest as a linear combination of these variables
(called covariates), together with some error. It turns out that this simple
prescription is very flexible, very powerful and useful.

If only because regression is inherently a subject in two or more dimensions,
it is not the first topic one studies in statistics. So this book should not be
the first book in statistics that the student uses. That said, the statistical
prerequisites we assume are modest, and will be covered by any first course on
the subject: ideas of sample, population, variation and randomness; the basics
of parameter estimation, hypothesis testing, p–values, confidence intervals etc.;
the standard distributions and their uses (normal, Student t, Fisher F and chi-
square – though we develop what we need of F and chi-square for ourselves).

Just as important as a first course in statistics is a first course in probability.
Again, we need nothing beyond what is met in any first course on the subject:
random variables; probability distribution and densities; standard examples of
distributions; means, variances and moments; some prior exposure to moment-
generating functions and/or characteristic functions is useful but not essential
(we include all we need here). Our needs are well served by John Haigh’s book
Probability models in the SUMS series, Haigh (2002).

Since the terms regression and linear model are largely synonymous in statis-
tics, it is hardly surprising that we make extensive use of linear algebra and
matrix theory. Again, our needs are well served within the SUMS series, in the
two books by Blyth and Robertson, Basic linear algebra and Further linear

algebra, Blyth and Robertson (2002a), (2002b). We make particular use of the
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viii Preface

material developed there on sums of orthogonal projections. It will be a plea-
sure for those familiar with this very attractive material from pure mathematics
to see it being put to good use in statistics.

Practical implementation of much of the material of this book requires
computer assistance – that is, access to one of the many specialist statistical
packages. Since we assume that the student has already taken a first course in
statistics, for which this is also true, it is reasonable for us to assume here too
that the student has some prior knowledge of and experience with a statistical
package. As with any other modern student text on statistics, one is here faced
with various choices. One does not want to tie the exposition too tightly to any
one package; one cannot cover all packages, and shouldn’t try – but one wants
to include some specifics, to give the text focus. We have relied here mainly on
S-Plus/R�.1

Most of the contents are standard undergraduate material. The boundary
between higher-level undergraduate courses and Master’s level courses is not
a sharp one, and this is reflected in our style of treatment. We have generally
included complete proofs except in the last two chapters on more advanced
material: Chapter 8, on Generalised Linear Models (GLMs), and Chapter 9,
on special topics. One subject going well beyond what we cover – Time Series,
with its extensive use of autoregressive models – is commonly taught at both
undergraduate and Master’s level in the UK. We have included in the last
chapter some material, on non-parametric regression, which – while no harder
– is perhaps as yet more commonly taught at Master’s level in the UK.

In accordance with the very sensible SUMS policy, we have included exer-
cises at the end of each chapter (except the last), as well as worked examples.
One then has to choose between making the book more student-friendly, by
including solutions, or more lecturer-friendly, by not doing so. We have nailed
our colours firmly to the mast here by including full solutions to all exercises.
We hope that the book will nevertheless be useful to lecturers also (e.g., in
inclusion of references and historical background).

Rather than numbering equations, we have labelled important equations
acronymically (thus the normal equations are (NE ), etc.), and included such
equation labels in the index. Within proofs, we have occasionally used local
numbering of equations: (∗), (a), (b) etc.

In pure mathematics, it is generally agreed that the two most attractive sub-
jects, at least at student level, are complex analysis and linear algebra. In statis-
tics, it is likewise generally agreed that the most attractive part of the subject is

1 S+, S-PLUS, S+FinMetrics, S+EnvironmentalStats, S+SeqTrial, S+SpatialStats,
S+Wavelets, S+ArrayAnalyzer, S-PLUS Graphlets, Graphlet, Trellis, and Trellis
Graphics are either trademarks or registered trademarks of Insightful Corporation
in the United States and/or other countries. Insightful Corporation1700 Westlake
Avenue N, Suite 500Seattle, Washington 98109 USA.



Preface ix

regression and the linear model. It is also extremely useful. This lovely combina-
tion of good mathematics and practical usefulness provides a counter-example,
we feel, to the opinion of one of our distinguished colleagues. Mathematical
statistics, Professor x opines, combines the worst aspects of mathematics with
the worst aspects of statistics. We profoundly disagree, and we hope that the
reader will disagree too.

The book has been influenced by our experience of learning this material,
and teaching it, at a number of universities over many years, in particular by
the first author’s thirty years in the University of London and by the time both
authors spent at the University of Sheffield. It is a pleasure to thank Charles
Goldie and John Haigh for their very careful reading of the manuscript, and
Karen Borthwick and her colleagues at Springer for their kind help throughout
this project. We thank our families for their support and forbearance.

NHB, JMF

Imperial College, London and the University of East London, March 2010
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1
Linear Regression

1.1 Introduction

When we first meet Statistics, we encounter random quantities (random
variables, in probability language, or variates, in statistical language) one at
a time. This suffices for a first course. Soon however we need to handle more
than one random quantity at a time. Already we have to think about how they
are related to each other.

Let us take the simplest case first, of two variables. Consider first the two
extreme cases.

At one extreme, the two variables may be independent (unrelated). For
instance, one might result from laboratory data taken last week, the other might
come from old trade statistics. The two are unrelated. Each is uninformative
about the other. They are best looked at separately. What we have here are
really two one-dimensional problems, rather than one two-dimensional problem,
and it is best to consider matters in these terms.

At the other extreme, the two variables may be essentially the same, in that
each is completely informative about the other. For example, in the Centigrade
(Celsius) temperature scale, the freezing point of water is 0o and the boiling
point is 100o, while in the Fahrenheit scale, freezing point is 32o and boiling
point is 212o (these bizarre choices are a result of Fahrenheit choosing as his
origin of temperature the lowest temperature he could achieve in the laboratory,
and recognising that the body is so sensitive to temperature that a hundredth
of the freezing-boiling range as a unit is inconveniently large for everyday,

N.H. Bingham and J.M. Fry, Regression: Linear Models in Statistics, 1
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-969-5 1,
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2 1. Linear Regression

non-scientific use, unless one resorts to decimals). The transformation formulae
are accordingly

C = (F − 32) × 5/9, F = C × 9/5 + 32.

While both scales remain in use, this is purely for convenience. To look at
temperature in both Centigrade and Fahrenheit together for scientific purposes
would be silly. Each is completely informative about the other. A plot of one
against the other would lie exactly on a straight line. While apparently a two–
dimensional problem, this would really be only one one-dimensional problem,
and so best considered as such.

We are left with the typical and important case: two–dimensional data,
(x1, y1), . . . , (xn, yn) say, where each of the x and y variables is partially but
not completely informative about the other.

Usually, our interest is on one variable, y say, and we are interested in what
knowledge of the other – x – tells us about y. We then call y the response
variable, and x the explanatory variable. We know more about y knowing x

than not knowing x; thus knowledge of x explains, or accounts for, part but
not all of the variability we see in y. Another name for x is the predictor variable:
we may wish to use x to predict y (the prediction will be an uncertain one, to
be sure, but better than nothing: there is information content in x about y,
and we want to use this information). A third name for x is the regressor, or
regressor variable; we will turn to the reason for this name below. It accounts
for why the whole subject is called regression.

The first thing to do with any data set is to look at it. We subject it to
exploratory data analysis (EDA); in particular, we plot the graph of the n

data points (xi, yi). We can do this by hand, or by using a statistical package:
Minitab�,1 for instance, using the command Regression, or S-Plus/R� by
using the command lm (for linear model – see below).

Suppose that what we observe is a scatter plot that seems roughly linear.
That is, there seems to be a systematic component, which is linear (or roughly
so – linear to a first approximation, say) and an error component, which we
think of as perturbing this in a random or unpredictable way. Our job is to fit
a line through the data – that is, to estimate the systematic linear component.

For illustration, we recall the first case in which most of us meet such a task
– experimental verification of Ohm’s Law (G. S. Ohm (1787-1854), in 1826).
When electric current is passed through a conducting wire, the current (in
amps) is proportional to the applied potential difference or voltage (in volts),
the constant of proportionality being the inverse of the resistance of the wire

1 Minitab�, Quality Companion by Minitab�, Quality Trainer by Minitab�, Quality.
Analysis. Results� and the Minitab logo are all registered trademarks of Minitab,
Inc., in the United States and other countries.



1.2 The Method of Least Squares 3

(in ohms). One measures the current observed for a variety of voltages (the
more the better). One then attempts to fit a line through the data, observing
with dismay that, because of experimental error, no three of the data points are
exactly collinear. A typical schoolboy solution is to use a perspex ruler and fit
by eye. Clearly a more systematic procedure is needed. We note in passing that,
as no current flows when no voltage is applied, one may restrict to lines through
the origin (that is, lines with zero intercept) – by no means the typical case.

1.2 The Method of Least Squares

The required general method – the Method of Least Squares – arose in a rather
different context. We know from Newton’s Principia (Sir Isaac Newton (1642–
1727), in 1687) that planets, the Earth included, go round the sun in elliptical
orbits, with the Sun at one focus of the ellipse. By cartesian geometry, we
may represent the ellipse by an algebraic equation of the second degree. This
equation, though quadratic in the variables, is linear in the coefficients. How
many coefficients p we need depends on the choice of coordinate system – in
the range from two to six. We may make as many astronomical observations of
the planet whose orbit is to be determined as we wish – the more the better, n

say, where n is large – much larger than p. This makes the system of equations
for the coefficients grossly over-determined, except that all the observations are
polluted by experimental error. We need to tap the information content of the
large number n of readings to make the best estimate we can of the small
number p of parameters.

Write the equation of the ellipse as

a1x1 + a2x2 + . . . = 0.

Here the aj are the coefficients, to be found or estimated, and the xj are those
of x2, xy, y2, x, y, 1 that we need in the equation of the ellipse (we will always
need 1, unless the ellipse degenerates to a point, which is not the case here).
For the ith point, the left-hand side above will be 0 if the fit is exact, but εi say
(denoting the ith error) in view of the observational errors. We wish to keep the
errors εi small; we wish also to put positive and negative εi on the same footing,
which we may do by looking at the squared errors ε2i . A measure of the discrep-
ancy of the fit is the sum of these squared errors,

∑n
i=1ε

2
i . The Method of Least

Squares is to choose the coefficients aj so as to minimise this sums of squares,

SS :=
∑n

i=1
ε2i .

As we shall see below, this may readily and conveniently be accomplished.
The Method of Least Squares was discovered independently by two workers,

both motivated by the above problem of fitting planetary orbits. It was first
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published by Legendre (A. M. Legendre (1752–1833), in 1805). It had also been
discovered by Gauss (C. F. Gauss (1777–1855), in 1795); when Gauss published
his work in 1809, it precipitated a priority dispute with Legendre.

Let us see how to implement the method. We do this first in the simplest
case, the fitting of a straight line

y = a + bx

by least squares through a data set (x1, y1), . . . , (xn, yn). Accordingly, we choose
a, b so as to minimise the sum of squares

SS :=
∑n

i=1
ε2i =

∑n

i=1
(yi − a − bxi)2.

Taking ∂SS/∂a = 0 and ∂SS/∂b = 0 gives

∂SS/∂a := −2
∑n

i=1
ei = −2

∑n

i=1
(yi − a − bxi),

∂SS/∂b := −2
∑n

i=1
xiei = −2

∑n

i=1
xi(yi − a − bxi).

To find the minimum, we equate both these to zero:
∑n

i=1
(yi − a − bxi) = 0 and

∑n

i=1
xi(yi − a − bxi) = 0.

This gives two simultaneous linear equations in the two unknowns a, b, called
the normal equations. Using the ‘bar’ notation

x :=
1
n

∑n

i=1
xi.

Dividing both sides by n and rearranging, the normal equations are

a + bx = y and ax + bx2 = xy.

Multiply the first by x and subtract from the second:

b =
xy − x.y

x2 − (x)2
,

and then
a = y − bx.

We will use this bar notation systematically. We call x := 1
n

∑n
i=1xi the sample

mean, or average, of x1, . . . , xn, and similarly for y. In this book (though not
all others!), the sample variance is defined as the average, 1

n

∑n
i=1(xi − x)2, of

(xi − x)2, written s2
x or sxx. Then using linearity of average, or ‘bar’,

s2
x = sxx = (x − x)2 = x2 − 2x.x + x2 = (x2) − 2x.x + (x)2 = (x2) − (x)2,
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since x.x = (x)2. Similarly, the sample covariance of x and y is defined as the
average of (x − x)(y − y), written sxy. So

sxy = (x − x)(y − y) = xy − x.y − x.y + x.y

= (xy) − x.y − x.y + x.y = (xy) − x.y.

Thus the slope b is given by the sample correlation coefficient

b = sxy/sxx,

the ratio of the sample covariance to the sample x-variance. Using the alterna-
tive ‘sum of squares’ notation

Sxx :=
∑n

i=1
(xi − x)2, Sxy :=

∑n

i=1
(xi − x)(yi − y),

b = Sxy/Sxx, a = y − bx.

The line – the least-squares line that we have fitted – is y = a + bx with this a

and b, or
y − y = b(x − x), b = sxy/sxx = Sxy/Sxx. (SRL)

It is called the sample regression line, for reasons which will emerge later.
Notice that the line goes through the point (x, y) – the centroid, or centre

of mass, of the scatter diagram (x1, y1), . . . , (xn, yn).

Note 1.1

We will see later that if we assume that the errors are independent and iden-
tically distributed (which we abbreviate to iid) and normal, N(0, σ2) say, then
these formulas for a and b also give the maximum likelihood estimates. Further,
100(1 − α)% confidence intervals in this case can be calculated from points â

and b̂ as

a = â ± tn−2(1 − α/2)s

√∑
x2

i

nSxx
,

b = b̂ ± tn−2(1 − α/2)s√
Sxx

,

where tn−2(1−α/2) denotes the 1−α/2 quantile of the Student t distribution
with n − 2 degrees of freedom and s is given by

s =

√
1

n − 2

(

Syy −
S2

xy

Sxx

)

.
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Example 1.2

We fit the line of best fit to model y = Height (in inches) based on x = Age
(in years) for the following data:
x=(14, 13, 13, 14, 14, 12, 12, 15, 13, 12, 11, 14, 12, 15, 16, 12, 15, 11, 15),
y=(69, 56.5, 65.3, 62.8, 63.5, 57.3, 59.8, 62.5, 62.5, 59.0, 51.3, 64.3, 56.3, 66.5,
72.0, 64.8, 67.0, 57.5, 66.5).

11 12 13 14 15 16

55
60

65
70

Age (Years)

H
ei

gh
t (

In
ch

es
)

Figure 1.1 Scatter plot of the data in Example 1.2 plus fitted straight line

One may also calculate Sxx and Sxy as

Sxx =
∑

xiyi − nxy,

Sxy =
∑

x2
i − nx2.

Since
∑

xiyi = 15883, x̄ = 13.316, ȳ = 62.337,
∑

x2
i = 3409, n = 19, we have

that

b =
15883− 19(13.316)(62.337)

3409 − 19(13.3162)
= 2.787 (3 d.p.).

Rearranging, we see that a becomes 62.33684 − 2.787156(13.31579) = 25.224.
This model suggests that the children are growing by just under three inches
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per year. A plot of the observed data and the fitted straight line is shown in
Figure 1.1 and appears reasonable, although some deviation from the fitted
straight line is observed.

1.2.1 Correlation version

The sample correlation coefficient r = rxy is defined as

r = rxy :=
sxy

sxsy
,

the quotient of the sample covariance and the product of the sample standard
deviations. Thus r is dimensionless, unlike the other quantities encountered so
far. One has (see Exercise 1.1)

−1 ≤ r ≤ 1,

with equality if and only if (iff) all the points (x1, y1), . . . , (xn, yn) lie on a
straight line. Using sxy = rxysxsy and sxx = s2

x, we may alternatively write
the sample regression line as

y − y = b(x − x), b = rxysy/sx. (SRL)

Note also that the slope b has the same sign as the sample covariance and sample
correlation coefficient. These will be approximately the population covariance
and correlation coefficient for large n (see below), so will have slope near zero
when y and x are uncorrelated – in particular, when they are independent,
and will have positive (negative) slope when x, y are positively (negatively)
correlated.

We now have five parameters in play: two means, μx and μy, two variances
σ2

x and σ2
y (or their square roots, the standard deviations σx and σy), and one

correlation, ρxy. The two means are measures of location, and serve to identify
the point – (μx, μy), or its sample counterpart, (x, y) – which serves as a natural
choice of origin. The two variances (or standard deviations) are measures of
scale, and serve as natural units of length along coordinate axes centred at this
choice of origin. The correlation, which is dimensionless, serves as a measure
of dependence, or linkage, or association, and indicates how closely y depends
on x – that is, how informative x is about y. Note how differently these behave
under affine transformations, x �→ ax + b. The mean transforms linearly:

E(ax + b) = aEx + b;

the variance transforms by

var(ax + b) = a2var(x);

the correlation is unchanged – it is invariant under affine transformations.
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1.2.2 Large-sample limit

When x1, . . . , xn are independent copies of a random variable x, and x has
mean Ex, the Law of Large Numbers says that

x → Ex (n → ∞).

See e.g. Haigh (2002), §6.3. There are in fact several versions of the Law of Large
Numbers (LLN). The Weak LLN (or WLLN) gives convergence in probability
(for which see e.g. Haigh (2002). The Strong LLN (or SLLN) gives convergence
with probability one (or ‘almost surely’, or ‘a.s.’); see Haigh (2002) for a short
proof under stronger moment assumptions (fourth moment finite), or Grimmett
and Stirzaker (2001), §7.5 for a proof under the minimal condition – existence
of the mean. While one should bear in mind that the SLLN holds only off some
exceptional set of probability zero, we shall feel free to state the result as above,
with this restriction understood. Note the content of the SLLN: thinking of a
random variable as its mean plus an error, independent errors tend to cancel
when one averages. This is essentially what makes Statistics work: the basic
technique in Statistics is averaging.

All this applies similarly with x replaced by y, x2, y2, xy, when all these
have means. Then

s2
x = sxx = x2 −

(
x2

)
→ E

(
x2

)
− (Ex)2 = var(x),

the population variance – also written σ2
x = σxx – and

sxy = xy − x.y → E(xy) − Ex.Ey = cov(x, y),

the population covariance – also written σxy. Thus as the sample size n in-
creases, the sample regression line

y − y = b(x − x), b = sxy/sxx

tends to the line

y − Ey = β(x − Ex), β = σxy/σxx. (PRL)

This – its population counterpart – is accordingly called the population regres-
sion line.

Again, there is a version involving correlation, this time the population
correlation coefficient

ρ = ρxy :=
σxy

σxσy
:

y − Ey = β(x − Ex), β = ρxyσy/σx. (PRL)



1.3 The origins of regression 9

Note 1.3

The following illustration is worth bearing in mind here. Imagine a school
Physics teacher, with a class of twenty pupils; they are under time pressure
revising for an exam, he is under time pressure marking. He divides the class
into ten pairs, gives them an experiment to do over a double period, and with-
draws to do his marking. Eighteen pupils gang up on the remaining two, the
best two in the class, and threaten them into agreeing to do the experiment for
them. This pair’s results are then stolen by the others, who to disguise what
has happened change the last two significant figures, say. Unknown to all, the
best pair’s instrument was dropped the previous day, and was reading way too
high – so the first significant figures in their results, and hence all the others,
were wrong. In this example, the insignificant ‘rounding errors’ in the last sig-
nificant figures are independent and do cancel – but no significant figures are
correct for any of the ten pairs, because of the strong dependence between the
ten readings. Here the tenfold replication is only apparent rather than real, and
is valueless. We shall see more serious examples of correlated errors in Time
Series in §9.4, where high values tend to be succeeded by high values, and low
values tend to be succeeded by low values.

1.3 The origins of regression

The modern era in this area was inaugurated by Sir Francis Galton (1822–1911),
in his book Hereditary genius – An enquiry into its laws and consequences of
1869, and his paper ‘Regression towards mediocrity in hereditary stature’ of
1886. Galton’s real interest was in intelligence, and how it is inherited. But intel-
ligence, though vitally important and easily recognisable, is an elusive concept
– human ability is infinitely variable (and certainly multi–dimensional!), and
although numerical measurements of general ability exist (intelligence quotient,
or IQ) and can be measured, they can serve only as a proxy for intelligence
itself. Galton had a passion for measurement, and resolved to study something
that could be easily measured; he chose human height. In a classic study, he
measured the heights of 928 adults, born to 205 sets of parents. He took the
average of the father’s and mother’s height (‘mid-parental height’) as the pre-
dictor variable x, and height of offspring as response variable y. (Because men
are statistically taller than women, one needs to take the gender of the offspring
into account. It is conceptually simpler to treat the sexes separately – and focus
on sons, say – though Galton actually used an adjustment factor to compen-
sate for women being shorter.) When he displayed his data in tabular form,
Galton noticed that it showed elliptical contours – that is, that squares in the
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(x, y)-plane containing equal numbers of points seemed to lie approximately on
ellipses. The explanation for this lies in the bivariate normal distribution; see
§1.5 below. What is most relevant here is Galton’s interpretation of the sample
and population regression lines (SRL) and (PRL). In (PRL), σx and σy are
measures of variability in the parental and offspring generations. There is no
reason to think that variability of height is changing (though mean height has
visibly increased from the first author’s generation to his children). So (at least
to a first approximation) we may take these as equal, when (PRL) simplifies to

y − Ey = ρxy(x − Ex). (PRL)

Hence Galton’s celebrated interpretation: for every inch of height above (or
below) the average, the parents transmit to their children on average ρ inches,
where ρ is the population correlation coefficient between parental height and
offspring height. A further generation will introduce a further factor ρ, so the
parents will transmit – again, on average – ρ2 inches to their grandchildren.
This will become ρ3 inches for the great-grandchildren, and so on. Thus for
every inch of height above (or below) the average, the parents transmit to their
descendants after n generations on average ρn inches of height. Now

0 < ρ < 1

(ρ > 0 as the genes for tallness or shortness are transmitted, and parental
and offspring height are positively correlated; ρ < 1 as ρ = 1 would imply
that parental height is completely informative about offspring height, which is
patently not the case). So

ρn → 0 (n → ∞):

the effect of each inch of height above or below the mean is damped out with
succeeding generations, and disappears in the limit. Galton summarised this as
‘Regression towards mediocrity in hereditary stature’, or more briefly, regres-
sion towards the mean (Galton originally used the term reversion instead, and
indeed the term mean reversion still survives). This explains the name of the
whole subject.

Note 1.4

1. We are more interested in intelligence than in height, and are more likely
to take note of the corresponding conclusion for intelligence.

2. Galton found the conclusion above depressing – as may be seen from his
use of the term mediocrity (to call someone average may be factual, to call


